Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign

نویسنده

  • R. Dupont
چکیده

We use ozone and carbon monoxide measurements from the Tropospheric Emission Spectrometer (TES), model estimates of Ozone, CO, and ozone pre-cursors from the Real-time Air Quality Modeling System (RAQMS), and data from the NASA DC8 aircraft to characterize the source and dynamical evolution of ozone and CO in Asian wildfire plumes during the spring ARCTAS campaign 2008. On the 19 April, NASA DC8 O3 and aerosol Differential Absorption Lidar (DIAL) observed two biomass burning plumes originating from North-Western Asia (Kazakhstan) and SouthEastern Asia (Thailand) that advected eastward over the Pacific reaching North America in 10 to 12 days. Using both TES observations and RAQMS chemical analyses, we track the wildfire plumes from their source to the ARCTAS DC8 platform. In addition to photochemical production due to ozone pre-cursors, we find that exchange between the stratosphere and the troposphere is a major factor influencing O3 concentrations for both plumes. For example, the Kazakhstan and Siberian plumes at 55 degrees North is a region of significant springtime stratospheric/tropospheric exchange. Stratospheric air influences the Thailand plume after it is lofted to high altitudes via the Himalayas. Using comparisons of the model to the aircraft and satellite measurements, we estimate that the Kazakhstan plume is responsible for increases of O3 and CO mixing ratios by approximately 6.4 ppbv and 38 ppbv in the lower troposphere (height of 2 to 6 km), and the Thailand plume is responsible for increases of O3 and CO mixing ratios of approximately 11 ppbv and 71 ppbv in the upper troposphere (height of 8 to 12 km) respectively. However, there are significant sources of uncertainty in these estimates that point to the need for future improvements in both model and satellite observations. For example, it is challenging to characterize the fraction of air parcels from the stratosphere versus those from the fire because of the low sensitivity of the TES CO estimates used to mark stratospheric air versus air parcels affected by the smoke plume. Model transport uncertainties, such as too much dispersion, results in a broad plume structure from the Kazakhstan fires that is approximately 2 km lower than the plume observed by aircraft. Consequently, the model and TES data do not capture the photochemical production of ozone in the Kazakhstan plume that is apparent in the aircraft in situ data. However, ozone and CO distributions from TES and RAQMS model estimates of the Thailand plume are within the uncertainties of the TES data. Therefore, the RAQMS model is better able to characterize the emissions from this fire, the mixing of ozone from the stratosphere to the plume, and the photochemical production and transport of ozone and ozone pre-cursors as the plume moves across the Pacific. Published by Copernicus Publications on behalf of the European Geosciences Union. 170 R. Dupont et al.: Attribution and evolution of ozone from Asian wild fires

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations

We determine enhancement ratios for NOx, PAN, and other NOy species from boreal biomass burning using aircraft data obtained during the ARCTAS-B campaign and examine the impact of these emissions on tropospheric ozone in the Arctic. We find an initial emission factor for NOx of 1.06 g NO per kg dry matter (DM) burned, much lower than previous observations of boreal plumes, and also one third th...

متن کامل

The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) Mission: Design, Execution, and First Results

The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June–July 2008). Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) influx of mid-latitude pollution, (2) boreal forest...

متن کامل

Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions

We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign...

متن کامل

Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide

We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003– 2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data give...

متن کامل

Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing

We use a global chemical transport model (GEOSChem CTM) to interpret observations of black carbon (BC) and organic aerosol (OA) from the NASA ARCTAS aircraft campaign over the North American Arctic in April 2008, as well as longer-term records in surface air and in snow (2007– 2009). BC emission inventories for North America, Europe, and Asia in the model are tested by comparison with surface a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012